

p-Toluenesulfonic Acid Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN₃ for Synthesis of 4-Aryl-*NH*-1,2,3-triazoles

Xue-Jing Quan, Zhi-Hui Ren, Yao-Yu Wang, and Zheng-Hui Guan*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China

Supporting Information

ABSTRACT: A *p*-TsOH-mediated 1,3-dipolar cycloaddition of nitroolefins and sodium azide for the synthesis of 4-aryl-*NH*-1,2,3-triazoles has been developed. *p*-TsOH was discovered as a vital additive in this type of 1,3-dipolar cycloaddition. This novel cycloaddition reaction is a good method for the rapid synthesis of valuable 4-aryl-*NH*-1,2,3-triazoles in high yields.

1,2,3-Triazoles are one of the most valuable compounds and have been widely applied in diverse areas of chemistry such as

Figure 1. Several 4-aryl-NH-1,2,3-triazoles and their derivatives.

Scheme 1. Strategies for the Synthesis of 4-Aryl-NH-1,2,3-triazoles

Previous works:

medicinal chemistry, agrochemistry, and materials chemistry.¹ Therefore, methods for the synthesis of 1,2,3-triazoles have gained much attention in the past decades.² The Huisgen azide–alkyne 1,3-dipolar cycloaddition (AAC)³ and later developed Cu-⁴ or Ru-catalyzed⁵ azide–alkyne cycloadditions (CuAAC, RuAAC) are the most commonly utilized methods for the synthesis of *N*-substituted 1,2,3-triazoles. However, most of these protocols employ alkynes and organic azides as

Table 1. Optimization of the Reaction Conditions^a

	NO ₂ + NaN ₃ -	solvent	N≓N Pł NH + 2a	Ph 3a
entry	acid (equiv)	solvent	temp (°C)	yield (%) ^b
1		DMSO	110	30 ^c
2	$FeCl_3$ (0.1)	DMSO	110	66
3	$ZnBr_2$ (0.1)	DMSO	110	52
4	HOAc (0.1)	DMSO	110	56
5	PivOH (0.1)	DMSO	110	55
6	TFA (0.1)	DMSO	110	76
7	<i>p</i> -TsOH (0.1)	DMSO	110	83
8	<i>p</i> -TsOH (0.3)	DMSO	110	86
9	<i>p</i> -TsOH (0.5)	DMSO	110	90
10	<i>p</i> -TsOH (0.5)	DMSO	60	92
11	<i>p</i> -TsOH (0.5)	DMSO	rt	80
12	<i>p</i> -TsOH (0.5)	DMF	60	93
13	<i>p</i> -TsOH (0.5)	CH ₃ OH	60	24
14	<i>p</i> -TsOH (0.5)	CH ₃ CN	60	7
15	<i>p</i> -TsOH (0.5)	H ₂ O	60	trace
² D (*	1	(0.2 1) M	NT (1 C	• • • • • • •

^{*a*}Reaction conditions: **1a** (0.3 mmol), NaN_3 (1.5 equiv), and acid (indicated amount), in solvent (3 mL) in air. ^{*b*}Isolated yield. ^{*c*}48% of **3a** was isolated

the substrates, thus restricting the synthesis of N1-substituted 1,2,3-triazoles. And the employed transition-metal catalysts are not compatible with some biological applications. Recently, complementary methods, such as organocatalyzed azide–ketone cycloaddition,⁶ the three-component reaction,⁷ thermo-dynamic cycloaddition of α , β -disubstituted nitroolefins and sodium azide,⁸ Cu-catalyzed cyclization of *N*-tosylhydrazones and anilines,⁹ Ir-catalyzed azide–alkyne cycloaddition (IrAAC),¹⁰ and functionalization of simple 1,2,3-triazoles,¹¹

Received:September 22, 2014Published:October 24, 2014

			IO ₂ + NaN ₃	0-TsOH MF, 60 ℃	R II NH		
entry	substrate. 1	1 product, 2	vield (%) ^b	entry	2 substrate, 1	product. 2	vield (%) ^b
1	NO ₂ 1a	N=N NH 2a	93	10			90
2	1b NO ₂	N=N NH 2b	94	11	Br 1k	Br 2k	66
3	NO ₂	N=N NH	94	12	0 ₂ N 11		70
4	NO ₂	N=N NH	97	13	NC 1m	NC 2m	66 ^c
5	NO ₂	O N=N NH 2e	95	14	MeO ₂ C In	MeO ₂ C 2n	71 ^c
6	OH NO ₂ If	OH N=N NH	73	15	10 NO ₂	N=N NH	85
7	F 1g	F 2g	96	16	NO ₂ NO ₂	N=N NH S 2p	87
8	CI Th	CI 2h	84	17			85°
9		CI N=N NH 2i	93	18	NO ₂ 1r	2r N=N. NH 2r	74 ^c

Table 2. p-TsOH-Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN₃ for Synthesis of 4-Aryl-NH-1,2,3-triazoles^a

^{*a*}Reaction conditions: 1 (0.3 mmol), NaN₃ (1.5 equiv), *p*-TsOH (0.5 equiv), DMF (3 mL) at 60 °C for 1–3 h, in air. ^{*b*}Isolated yield. ^{*c*}The reaction was performed at 100 °C.

have emerged. However, versatile and practical methods for the synthesis of substituted 1,2,3-triazoles are still desirable.

4-Aryl-NH-1,2,3-triazoles are a class of important triazoles, which were discovered to be potent inhibitors of cobaltactivated human methionine aminopeptidase type 2 (hMetAP2) a and indoleamine 2,3-dioxygenase (IDO) b-c; thus, they have great potential to become anticancer drugs.¹² They are also important precursors to synthesize bioactive Nsubstituted triazoles, such as antibacterial agent d, anticancer agents e, and endocannabinoid biosynthesis probes f (Figure 1).¹³ However, the preparation of this class of simple molecules (4-aryl-NH-1,2,3-triazoles) is still a challenging task. Methods for the synthesis of 4-aryl-NH-1,2,3-triazoles are still mainly limited to cycloaddition of TMSN₃ (trimethylsilyl azide)alkynes followed by deprotection of the TMS (trimethylsilyl) group,¹⁴ and palladium-catalyzed cyclization of vinyl bromides and sodium azide.¹⁵ In this paper, we describe the development of a p-TsOH-mediated 1,3-dipolar cycloaddition of nitroolefins with NaN₃ for the synthesis of 4-aryl-NH-1,2,3-triazoles (Scheme 1).

Due to the explosive and toxic nature of hydrazoic acids, Brønsted acids should not be mixed with NaN₃. Therefore, the reaction of NaN3 has always been conducted under basic or neutral conditions.^{14b} However, the cycloaddition of simple arylnitroolefin and NaN3 resulted in significant cyclotrimerization of nitroolefin under neutral conditions (Table 1, entry 1).^{8a} We hypothesized that the undesired cyclotrimerization of nitroolefin 1a may be inhibited under acidic conditions. Therefore, various Lewis acids and Brønsted acids were screened under careful operation (Table 1, entries 2-7). Indeed, the efficiency of the 1,3-dipolar cycloaddition was dramatically improved in the presence of 10 mol % of a Lewis acid or a Brønsted acid. Especially, p-TsOH gives an 83% yield of the 4-phenyl-NH-1,2,3-triazole 2a (Table 1, entry 7). Then, the amount of *p*-TsOH and the reaction temperature were optimized; a 92% yield of 2a was obtained in the presence of 0.5 equiv of p-TsOH at 60 °C (Table 1, entry 10). Furthermore, various solvents were also screened (Table 1, entries 12-15). It was found that the side product 3a was

Table 3. p-TsOH-Mediated Cycloaddition of Various Nitroolefins with NaN₃^a

 a Reaction conditions: 1 (0.3 mmol), NaN₃ (1.5 equiv), *p*-TsOH (0.5 equiv), DMF (3 mL), at 60 $^\circ \rm C$ for 1–3 h, in air. b Isolated yield.

Scheme 2. *p*-TsOH-Mediated Cycloaddition of Nitroolefin 1a with Benzyl Azide

Scheme 3. A Gram-Scale Preparation of 4-Phenyl-NH-1,2,3-triazole

totally suppressed when DMF was used as the solvent and a slightly higher yield (93%) was isolated (Table 1, entry 12).

With the optimized reaction conditions established, we have investigated the reaction scope (Table 2). This new p-TsOHmediated 1,3-dipolar cycloaddition reaction displayed good functional-group tolerance and proved to be a general method for the synthesis of 4-aryl-NH-1,2,3-triazoles. Nitroolefins with electron-neutral or -donating groups on aryl rings, such as methyl, methoxyl, and hydroxyl, all gave the corresponding 4aryl-NH-1,2,3-triazoles 2b-2f in high to excellent yields (Table 2, entries 2-6). Nitroolefins with electron-withdrawing groups on aryl rings, such as fluoro, chloro, bromo, and nitro, reacted smoothly and resulted in the 1,3-dipolar cycloaddition products 2g-2l in 66-96% yields, thus implying that the electronic nature of the substrates has little influence on the cycloaddition reaction (Table 2, entries 7-12). However, a higher reaction temperature was needed when the strongly electron-poor pcyano-substituted nitroolefin 1m and (E)-methyl 4-(2nitrovinyl)benzoate 1n were used as the substrates (Table 2,

entries 13–14). In addition, heterocyclic substituted or vinyl substituted nitroolefins such as 10-1r also proceeded smoothly in the reaction to give the *NH*-1,2,3-triazoles 20-2r in 74–87% yields (Table 2, entries 15–18). However, aliphatic nitroolefins were inactive in the reaction.

Furthermore, disubstituted nitroolefins were investigated to explore the reaction scope (Table 3). Disubstituted nitroolefins 1s-1v could be used in the 1,3-dipolar cycloaddition reaction and provided the corresponding 4,5-disubstituted-*NH*-1,2,3-triazoles in nearly quantitative yields under the standard conditions.

It should be noted that organic azides were also tolerated in this *p*-TsOH-mediated cycloaddition. As expected, 1-benzyl-4-phenyl-1,2,3-triazole **4a** was obtained in 60% yield when benzyl azide was used as the substrate (Scheme 2).

To demonstrate the synthetic utility of this reaction, a gramscale (70 mmol) reaction was performed (Scheme 3). The 4phenyl-*NH*-1,2,3-triazole **2a** was achieved in 81% yield by crystallization of the crude product.

In summary, we have developed a novel and efficient p-TsOH-mediated 1,3-dipolar cycloaddition of nitroolefins and inorganic NaN₃ for the synthesis of valuable 4-aryl-NH-1,2,3-triazoles. p-TsOH was discovered as a vital additive in the reaction. This novel cycloaddition reaction tolerates a wide range of functional groups and is a reliable method for the rapid elaboration of readily available nitroolefins and NaN₃ into a variety of NH-1,2,3-triazoles in high yields under mild conditions. The reaction is complementary for the well-known 1,3-dipolar cycloaddition. Further scope and mechanistic studies of the reaction are underway.

ASSOCIATED CONTENT

Supporting Information

Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: guanzhh@nwu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by generous grants from the National Natural Science Foundation of China (21472147, 21272183), and the Fund of the Rising Stars of Shanxi Province (2012KJXX26).

REFERENCES

(1) (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905–4979. (b) Wang, K.; Chen, M.; Wang, Q.; Shi, X.; Lee, J. K. J. Org. Chem. 2013, 78, 7249–7258. (c) Chen, C.-Y.; Lee, P.-H.; Lin, Y.-Y.; Yu, W.-T.; Hu, W.-P.; Hsu, C.-C.; Lin, Y.-T.; Chang, L.-S.; Hsiao, C.-T.; Wang, J.-J.; Chung, M.-I. Bioorg. Med. Chem. Lett. 2013, 23, 6854–6859. (d) Lau, Y.; Rutledge, P. J.; Watkinson, M.; Todd, M. H. Chem. Soc. Rev. 2011, 40, 2848–2866. (e) Liu, Y.-H.; Zhang, L.; Xu, X.-N.; Li, Z.-M.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Org. Chem. Front. 2014, 1, 494–500.

(2) (a) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302-1315.
(b) Kappe, C. O.; Eycken, E. V. D. Chem. Soc. Rev. 2010, 39, 1280-1290. (c) Wang, Y.-C.; Xie, Y.-Y.; Qu, H.-E.; Wang, H.-S.; Pan, Y.-M.; Huang, F.-P. J. Org. Chem. 2014, 79, 4463-4469. (d) Sahu, D.; Dey, S.; Pathak, T.; Ganguly, B. Org. Lett. 2014, 16, 2100-2103. (e) Wu, L.;

Chen, Y.; Luo, J.; Sun, Q.; Peng, M.; Lin, Q. *Tetrahedron Lett.* **2014**, 55, 3847–3850. (f) Hong, L.; Lin, W.; Zhang, F.; Liu, R.; Zhou, X. *Chem. Commun.* **2013**, 49, 5589–5591. (g) Li, J.; Wang, D.; Zhang, Y.; Li, J.; Chen, B. *Org. Lett.* **2009**, *11*, 3024–3027.

(3) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984.

(4) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (c) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. (d) Kamata, K.; Nakagawa, Y.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc. 2008, 130, 15304–15310. (e) Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018–8021.

(5) (a) Zhang, L.; Chen, X. G.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. C. *J. Am. Chem. Soc.* **2005**, 127, 15998–15999. (b) Majireck, M. M.; Weinreb, S. M. *J. Org. Chem.* **2006**, 71, 8680–8683. (c) Tam, A.; Arnold, U.; Soellner, M. B.; Raines, R. T. *J. Am. Chem. Soc.* **2007**, 129, 12670–12671.

(6) (a) Li, W.; Du, Z.; Huang, J.; Jia, Q.; Zhang, K.; Wang, J. Green Chem. 2014, 16, 3003–3006. (b) Ramachary, D. B.; Shashank, A. B. Chem.—Eur. J. 2013, 19, 13175–13181. (c) Wang, L.; Peng, S. Y.; Danence, L. J. T.; Gao, Y.; Wang, J. Chem.—Eur. J. 2012, 18, 6088–6093. (d) Belkheira, M.; Abed, D.; Pons, J.-M.; Bressy, C. Chem.—Eur. J. 2011, 17, 12917–12921. (e) Danence, L.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Chem.—Eur. J. 2011, 17, 3584–3587. (f) Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. Chem.—Eur. J. 2008, 14, 9143–9147.

(7) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. Angew. Chem., Int. Ed. 2014, 53, 10155-10159.

(8) (a) Zefirov, N. S.; Chapovskaya, N. K.; Kolesnikov, V. V. J. Chem. Soc. D 1971, 1001. (b) Quiclet-Sire, B.; Zard, S. Z. Synthesis 2005, 3319–3326. (c) Guan, Z.-H.; Li, L.; Ren, Z.-H.; Li, J.; Zhao, M.-N. Green Chem. 2011, 13, 1664–1668. (d) Zhao, M.-N.; Liang, H.; Ren, Z.-H.; Guan, Z.-H. Adv. Synth. Catal. 2013, 355, 221–226.

(9) Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324–13328.

(10) (a) Ding, S.; Jia, G.; Sun, J. Angew. Chem., Int. Ed. 2014, 53, 1877–1880. (b) Rasolofonjatovo, E.; Theeramunkong, S.; Bouriaud, A.; Kolodych, S.; Chaumontet, M.; Taran, F. Org. Lett. 2013, 15, 4698–4701.

(11) (a) Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem., Int. Ed.
2011, 50, 8944–8947. (b) Yan, W.; Liao, T.; Tuguldur, O.; Zhong, C.; Petersen, J. L.; Shi, X. Chem.—Asian J. 2011, 6, 2720–2724. (c) Yan,
W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308–3311. (d) Wang, X.-J.; Zhang, L.; Lee, H.; Haddad, N.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5026–5028. (e) Shi, W.; Shi, Z. Chin. J. Chem. 2014, 32, 974–980. (f) Sengupta, S.; Duan, H.; Lu, W.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 1493–1496.

(12) (a) Kallander, L. S.; Lu, Q.; Chen, W.; Tomaszek, T.; Yang, G.; Tew, D.; Meek, T. D.; Hofmann, G. A.; Schulz-Pritchard, C. K.; Smith, W. W.; Janson, C. A.; Ryan, M. D.; Zhang, G.; Johanson, K. O.; Kirkpatrick, R. B.; Ho, T. F.; Fisher, P. D.; Mattern, M. R.; Johnson, R. K.; Hansbury, M. J.; Winkler, J. D.; Ward, K. W.; Veber, D. F.; Thompson, S. K. J. Med. Chem. 2005, 48, 5644–5647. (b) Rohrig, U. F.; Awad, O. L.; Grosdidier, O. A.; Larrieu, P.; Stroobant, V.; Colau, D.; Cerundolo, V.; Simpson, A. J. G.; Vogel, P.; Van den Eynde, B. J.; Zoete, V.; Michielin, O. J. Med. Chem. 2010, 53, 1172–1189. (c) Huang, Q.; Zheng, M.; Yang, S.; Kuang, C.; Yu, C.; Yang, Q. *Eur. J. Med. Chem.* 2011, 46, 5680–5687. (d) Rohrig, U.; Majjigapu, S.; Grosdidier, A.; Bron, S.; Stroobant, V.; Pilotte, L.; Colau, D.; Vogel, P.; Eynde, B. J. V.; Zoete, V.; Michielin, O. J. Med. Chem. 2012, 55, 5270– 5290.

(13) (a) McAllister, L. A.; Montgomery, J. I.; Abramite, J. A.; Reilly, U.; Brown, M. F.; Chen, J. M.; Barham, R. A.; Che, Y.; Chung, S. W.; Menard, C. A.; Mark, M.-F.; Mullins, L. M.; Noe, M. C.; Donnell, J. P.; Oliver, R. M., III; Penzien, J. B.; Plummer, M.; Price, L. M.; Shanmugasundaram, V.; Tomaras, A. P.; Uccello, D. P. *Bioorg. Med.*

Chem. Lett. **2012**, *22*, 6832–6838. (b) Oh, S.; Shin, W.-S.; Ham, J.; Lee, S. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4112–4115. (c) Hsu, K.-L.; Tsuboi, K.; Whitby, L. R.; Speers, A. E.; Pugh, H.; Inloes, J.; Cravatt, B. F. *J. Med. Chem.* **2013**, *56*, 8257–8269.

(14) (a) Jin, T.; Kamijo, S.; Yamamoto, Y. Eur. J. Org. Chem. 2004, 3789–3791. (b) Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171–3174. (c) Cohrt, A. E.; Jensen, J. F.; Nielsen, T. E. Org. Lett. 2010, 12, 5414–5417.

(15) (a) Barlunga, J.; Valdés, C.; Beltrán, G.; Escribano, M.; Aznar, F. Angew. Chem., Int. Ed. 2006, 45, 6893–6896. (b) Wang, X.; Kuang, C.; Yang, Q. Eur. J. Org. Chem. 2012, 424–428.